233433 Bullies, 3441 online  
  • Register
Our Sponsors:

Results 21 to 30 of 34
Page 3 of 4 FirstFirst 123 4 LastLast
Sponsored Links Spacer Image
  1. PizDoff is offline

    .

    Join Date
    Feb 2003
    Location
    Toronto
    Posts
    18,602

    Posted On:
    6/06/2003 1:17pm

    supporting memberstaff
     Style: Grappling

    --
    Hell yeah! Hell no!
    "Pizdoff if you use the creatine just dont go to crazy with it. And remember to add grape juice or dextrose to the drink to get more out of the creatine."

    it totally works.....
    i have it in a mixture of something else, i seriously didn't know it was in a protein mix i bought, i have no money to buy it separately but i would if i could

    --
    Hard work, Patience, Dedication.

    "in final closing look yourselves in the mirror and you might see yourself." Posted by big buck - June 05 2003
    Surfing Facebook at work? Spread the good word by adding us on Facebook today! https://www.facebook.com/Bullshido
  2. Freddy is offline

    Senior Member

    Join Date
    Oct 2002
    Posts
    4,569

    Posted On:
    6/06/2003 3:12pm

    Join us... or die
     Style: Be Happy

    --
    Hell yeah! Hell no!
    I heard you shouldnt mix creatine in with a protein drink. With grape juice or dextrose no problem.

    "Do what thou wilt is the whole of the Law"
    Ghost of Charles Dickens
  3. PizDoff is offline

    .

    Join Date
    Feb 2003
    Location
    Toronto
    Posts
    18,602

    Posted On:
    6/07/2003 8:49am

    supporting memberstaff
     Style: Grappling

    --
    Hell yeah! Hell no!
    it was premixed in already, should i extract it out now?

    seriously, i haven't heard/read anything to the contrary, but i have read articles supporting your mixing method

    --
    Hard work, Patience, Dedication.

    "in final closing look yourselves in the mirror and you might see yourself." Posted by big buck - June 05 2003
    Surfing Facebook at work? Spread the good word by adding us on Facebook today! https://www.facebook.com/Bullshido
  4. Freddy is offline

    Senior Member

    Join Date
    Oct 2002
    Posts
    4,569

    Posted On:
    6/07/2003 5:06pm

    Join us... or die
     Style: Be Happy

    --
    Hell yeah! Hell no!
    I dunno?

    You know I heard somewhere the creatine and protein powder mix mix cause cancer.

    "Do what thou wilt is the whole of the Law"
    Ghost of Charles Dickens
  5. Stold3 is offline

    Senior Member

    Join Date
    Apr 2003
    Location
    Est
    Posts
    1,571

    Posted On:
    6/08/2003 12:03pm


     

    --
    Hell yeah! Hell no!
    Man, Canada pot laws are SO lax. It's amazing. You can get super bud even if you just live near the border.

    Yeah, I've seen purple weed. All purple means was that the grow room temp was high during flowering. By white you mean covered in crystals, like white widow?

    The gram I have right here is the citrus weed. Smells like lemons and smokes like a grapefruit.



    Edited by - Stold3 on June 08 2003 12:04:29
  6. OMG is offline

    Registered Member

    Join Date
    Apr 2003
    Posts
    50

    Posted On:
    6/09/2003 12:24pm


     

    --
    Hell yeah! Hell no!
    By white i mean white russian, its the same thing as widdow but the crystals form a different pattern. The other kids at my school get heteros and pick the seeds out, then they brag about the dankness of their weed. Fucking suckers dont know ****.
  7. Stold3 is offline

    Senior Member

    Join Date
    Apr 2003
    Location
    Est
    Posts
    1,571

    Posted On:
    6/09/2003 5:50pm


     

    --
    Hell yeah! Hell no!
    That's pretty sad, but good bud is pricey, and sometimes you have to settle for the seedy mexican weed. Hell, for $80 an ounce it's nice, but only good for joints and blunts.
  8. FingerorMoon? is offline

    The man they call FoM

    Join Date
    Jan 2003
    Location
    Melbourne, Australia
    Posts
    3,592

    Posted On:
    6/09/2003 6:35pm

    supporting member
     Style: BJJ

    --
    Hell yeah! Hell no!
    Article taken from www.Cyberpump.com
    An Amazing strength training website.
    Yearly membership to the site is totally worth it, its the best $20 you can spend online.

    * * *
    This is the unedited version of an article that appeared in the October 2000 issue of Master Trainer.

    CREATINE SUPPLEMENTATION: EFFECTIVE AND SAFE?
    By Matt Brzycki, BS

    Coordinator of Health Fitness, Strength and Conditioning
    Princeton University
    Princeton, New Jersey

    In recent years, there’s no question that the most popular supplement has been creatine. The two most important questions concerning creatine supplementation are:

    1. Is creatine effective?
    2. Is creatine safe?

    IS CREATINE EFFECTIVE?

    Promoters of creatine supplementation often cite the “solid research” showing that [creatine] increases strength, improves endurance, and builds lean muscle mass.” What does the “solid research” really say about the effects of creatine on these three variables? In addition, what does the “solid research” say about the effects of creatine during the performance of actual sports, realistic events or competitive situations?

    Does It Increase Strength?

    While it is true that there is “solid research” showing that creatine “increases strength,” there is roughly an equal amount of “solid research” showing that it does not produce significant increases in strength or other strength-related measures. For example, a study by Vandenberghe and others (1996) using 9 healthy males showed that creatine did not increase maximal isometric strength of the quadriceps. A study by Goldberg and Bechtel (1997) involving 34 football and track athletes found that creatine did not significantly improve low-body strength or one-repetition maximum (1-RM) strength in the bench press. A study by Hamilton-Ward and colleagues (1997) using 20 female athletes revealed that creatine did not affect 1-RM strength in elbow flexion, peak velocity (of the shoulder) or torque. A study by Kirksey and others (1997) study involving 36 track athletes found that creatine did not significantly improve performance in the vertical jump. A study by Stout and associates (1997) using 24 football players showed that creatine (and a glucose supplement) did not significantly increase 1-RM strength in the bench press or performance in the vertical jump. A study by Kreider and associates (1998) involving 25 football players found that creatine did not significantly improve squat or power clean lifting volume. A study by Miszko, Baer and Vanderburgh (1998) using 14 softball players showed that creatine did not significantly improve performance in the vertical jump. A study by Wood and colleagues (1998) involving 44 males revealed that creatine did not improve 1-RM strength in the bench press. A study by Van Leemputte, Vandenberghe and Hespel (1999) using 16 physical-education students showed that creatine did not alter the rate of maximal force production. A study by Gilliam and others (2000) involving 23 active males determined that creatine did not improve peak torque of the quadriceps. A study by Mihac and colleagues (2000) study using 30 subjects found that creatine did not significantly improve handgrip strength. A study by Quackenbush and associates (2000) involving 23 male high-school athletes revealed that creatine did not significantly improve 8-RM strength in the bench press, leg press or shoulder press or performance in the vertical jump.

    Taking into account this and other “solid research,” the effect of creatine on strength and other strength-related measures is inconclusive.

    Does It Improve Endurance?

    Considering the fact that creatine is an energy substrate used during maximal, short-term efforts with essentially no role during long-term efforts, it would not be expected that it "improves endurance." And, in fact, there is very little "solid research" showing that creatine has any positive effect on endurance other than during activities that involve repeated maximal, short-term efforts (Mujika and Padilla 1997; Williams and Branch 1998).

    Does It Build Lean-Muscle Mass?

    What many studies have shown is that creatine can increase body mass, not lean-body mass (LBM) or lean-muscle mass. And the most likely reason for the increased body mass is primarily due to water retention (within skeletal muscle cells) that -– needless to say -– isn’t necessarily desirable.

    The truth of the matter is that there is no pill, powder or potion currently in existence that, by itself, “builds lean-muscle mass” in healthy individuals. None. There is only one thing that “builds lean-muscle mass”: exercise. When combined with exercise –- particularly progressive-resistance exercise –- some studies found that creatine increased LBM. In all cases, the subjects in those studies were engaged in some type of strength-training activity. Interestingly, a study by Kirksey and others (1997) found that a group who used creatine increased their LBM by 4.8 kilograms . . . but a group who took a placebo increased their LBM by 3.5 kilograms. Moreover, it is important to note that the LBM of the subjects in this study was estimated by skinfold measurements –- an assessment that can be greatly influenced by varying degrees of human error.

    Finally, numerous studies have shown that creatine –- even when used in conjunction with progressive-resistance exercise -- failed to significantly increase LBM (Godly and Yates 1997; Hamilton-Ward et al. 1997; Stout et al. 1997; Terrillion et al. 1997; Ensign et al. 1998; Miszko et al. 1998; Wood et al. 1998; Quackenbush et al. 1999). Therefore, the “solid research” examining the effect of creatine on LBM is inconclusive.

    Does It Improve Athletic Performance?

    Much of the research investigating creatine -– including that which has been mentioned earlier -- has been done in an extremely well-controlled environment, namely a laboratory. In a controlled laboratory setting, the best evidence for performance enhancement from the use of creatine is in repeated maximal, short-term sprints on a stationary bicycle (and even then, some studies have shown no improvements). Unfortunately, there are no competitions for repeated maximal, short-term sprints on a stationary bicycle. Of the research that has been done outside a laboratory -- or “in the field” -- very few studies have shown that creatine had any beneficial effects during the performance of actual sports, realistic events or competitive situations (Mujika and Padilla 1997; Williams and Branch 1998; Juhn 1999). Simply consider the following studies –- many of which used highly trained athletes:

    As of 1998, a total of five studies had investigated the effects of creatine on actual sports performance done outside a laboratory in high-intensity efforts lasting 30 seconds or less. All five studies found no significant improvements in performance from creatine supplementation. For example, a study by Burke, Pyne and Telford (1996) involving 32 elite male and female swimmers from the Australian National Team showed that creatine did not enhance performance in swim sprints of 25 and 50 meters. A study by Mujika and others (1996) using 20 male and female swimmers found that creatine actually worsened performance in swim sprints of 25 and 50 meters. A study by Redondo and associates (1996) involving 24 highly trained male soccer and female field hockey players revealed that creatine did not enhance running velocity in a 60-meter sprint. A study by Goldberg and Bechtel (1997) using 34 football and track athletes showed that creatine did not significantly improve performance in a 40-yard dash. A study by Stout and colleagues (1997) involving 24 football players found that creatine did not significantly improve performance in a 100-yard dash.

    As of 1998, a total of seven studies (including two that were also mentioned in the previous paragraph) had investigated the effects of creatine on actual sports performance done outside a laboratory in efforts lasting 30 – 150 seconds. Six of the seven studies found no significant improvements in performance from creatine supplementation. For instance, studies by Burke, Pyne and Telford (1996) and Mujika and associates (1996) using a total of 52 elite male and female swimmers found that creatine did not improve performance in a 100-meter swim. A study by Terrillion and others (1997) involving 12 trained female runners showed that creatine did not improve performance in a 700-meter run. A study by Ensign and colleagues (1998) using 24 U. S. Navy Special Warfare personnel (SEALs) determined that creatine did not significantly improve the time taken to complete an obstacle course (which took roughly two minutes).

    As of 1998, a total of four studies had investigated the effects of creatine on actual sports performance done outside a laboratory in long-term efforts lasting more than 150 seconds. Three of the four studies found no significant improvements in performance from creatine supplementation. Actually, a study by Balsom and others (1993) using 18 well-trained male runners showed that creatine produced significantly slower times in a 6,000-meter run. Additionally, a study by Myburgh and associates (1996) involving 13 cyclists found that creatine did not increase the distance cycled in one hour.

    To summarize: As of 1998, a total of 14 different studies had investigated the effects of creatine on actual sports performance done outside a laboratory in efforts ranging from a handful of seconds to more than 150 seconds. In 12 of the 14 studies, creatine supplementation did not produce significant improvements in performance. Collectively, this “solid research” shows that any improved performance that may occur in laboratory settings does not translate into improved performance in realistic situations. This is especially true of highly trained or elite athletes (Mujika and Padilla 1997).

    IS CREATINE SAFE?

    Promoters of creatine supplementation feverishly insist that there are no adverse side effects reported in the scientific literature when it is consumed in the recommended dosages, typically 20 - 25 grams per day for 4 – 7 days for “loading” and then 2 grams per day for “maintenance.” And for the most part, their contention is true. The fact of the matter is that there have not been any adverse side effects reported in studies using 20 – 30 grams of creatine per day for up to seven days. Nor have there been any adverse side effects reported in studies using smaller dosages of 2 – 3 grams of creatine per day for longer periods up to seven weeks. However, this is nowhere near the months -- or years -- that an athlete might use creatine. Countless scientific, medical and nutritional authorities agree that the long-term effects of creatine supplementation are unknown (Clarkson and Rawson 1998; Williams and Branch 1998; Juhn, O’Kane and Vinci 1999). In fact, Kreider and others (1998) stated that “little data are available evaluating the medical safety of supplementing the diet with creatine during training for prolonged periods of time.” There is also a concern that many individuals typically exceed the “recommended dosage” –- undoubtedly putting them at greater risk for incurring negative side effects.

    And while there have been no adverse side effects reported in scientific studies conducted in a laboratory setting, those of us “in the trenches” have heard an endless exchange of anecdotal accounts from around the world concerning athletes who have taken creatine and experienced an abundance of adverse side effects. Although these observations are anecdotal, their sheer volume is such that they cannot be ignored. It is also important to consider a study by Juhn, O’Kane and Vinci (1999) published in a peer-reviewed journal that surveyed 52 baseball and football players who voluntarily took creatine. Of the 52 athletes, 14 (26.9%) did not report any adverse effects. Stated otherwise, 38 (73.1%) reported at least one adverse side effect.

    Due to individual variability, some may be more susceptible to adverse side effects than others. However, the following potential side effects are of greatest concern:

    Water Retention

    During the first few days of the “loading phase,” there is an increase in the retention of water within muscle cells and a concomitant -- and significant -- decrease in the production of urine (Hultman et al. 1996). As noted previously, the retention of water probably accounts for the rapid increase in body mass that accompanies creatine supplementation. In all likelihood, a rapid increase in body mass would hinder performance in mass-dependent activities such as running and swimming (Juhn and Tarnopolsky 1998; Juhn, O’Kane and Vinci 1999). In addition, unintentional weight gain may be a concern for wrestlers and other competitive athletes who must “make weight.”

    Intracellular water retention would also result in muscle enlargement. This muscular hypertrophy is transient, however, and unrelated to the long-term, adaptive increases in muscular size that occur in response to progressive-resistance exercise.

    Muscle Cramping

    One of the most frequently reported side effects of creatine supplementation outside a laboratory is muscle cramping -– which is often described as being “severe.” In the study by Juhn, O’Kane and Vinci (1999), 13 of the 52 athletes (25.0%) who used creatine reported muscle cramps. The large fluid shift into skeletal muscle (intracellular water retention) that is caused by creatine supplementation is thought to dilute electrolytes, thereby increasing the potential for muscle cramps. If creatine does induce an electrolyte imbalance, athletes who are not well hydrated and/or are training intensely in hot, humid environments where sweat rates are high would have a greater-than-normal risk of muscle cramping.

    Dehydration/Heat-Related Illness

    In 1998, the wrestling community was shocked by the deaths of three wrestlers in a period of 32 days: Freshman Billy Jack Saylor of Campbell University (NC) on November 7, senior Joseph LaRosa of Wisconsin-LaCrosse on November 21 and junior Jeff Reese of the University of Michigan on December 9. One common thread connecting the wrestlers is that all three died while trying to lose a fairly substantial amount of weight in a relatively short period of time. The manner in which all three attempted to lose weight was certainly unsafe and they were severely dehydrated. But the methods that they used in an attempt to lose weight had been quite commonplace in wrestling: restricting food and fluid intakes, wearing “sauna suits” and exercising in hot environments. Yet, there's no record of a similar death in collegiate wrestling. Actually, according to the National Collegiate Athletic Association (NCAA) there's no other instance of any college wrestler ever dying in any manner. Think about it: No deaths in a period of about one century and then three in a period of about one month. The Centers for Disease Control and Prevention (1998) determined that the wrestlers died because they “used vapor-impermeable suits and exercised vigorously in hot environments” which “promoted dehydration and heat-related illness.”

    At the time of their deaths, many quickly pointed an accusatory finger at creatine. The reason is that one of the most commonly reported side effects related to the use of creatine is dehydration. In the study by Juhn, O’Kane and Vinci (1999), 7 of the 52 athletes (13.5%) who took creatine reported dehydration. Ironically, the increased water retention within muscle cells that is associated with the use of creatine increases the risk of dehydration and heat-related illness. This is because the fluid shift into skeletal muscle reduces blood plasma volume which, in turn, reduces the ability to dissipate heat. Although it was not linked to the deaths of the wrestlers, some believe that creatine could intensify an already dehydrated state, resulting in heightened thermal stress and a resultant life-threatening situation.

    Muscle Strains/Dysfunction

    It is speculated that the intracellular water retention related to the use of creatine increases the intramuscular pressure which could contribute to muscle strains and/or dysfunction.

    Gastrointestinal Distress

    Creatine may cause a variety of gastrointestinal disturbances. In the study by Juhn, O’Kane and Vinci (1999), 16 of the 52 athletes (30.8%) who used creatine reported diarrhea. Other gastrointestinal afflictions that are often cited anecdotally include an upset stomach, gastrointestinal pain, flatulence, nausea and vomiting.

    Liver Function

    Research has shown that when the consumption of exogenous (foreign) creatine is increased, the production of endogenous (natural) creatine by the liver is decreased. It is unclear as to how the long-term use of creatine might influence the function of the liver with respect to endogenous creatine synthesis.

    Kidney Function

    There is a limit as to how much creatine can be extracted from the bloodstream and stored in muscle. Once this saturation point is reached, additional amounts are excreted by the kidneys (Juhn 1999). Creatine supplementation can produce astronomical increases in the urinary excretion rate of creatine. In a study by Poortmans and others (1997), subjects ingested 20 grams of creatine per day for five days (a typical “recommended dosage” during the “loading phase”) and -– in comparison to their “placebo condition” -- experienced an average elevation in their urinary excretion rates of 8,856.7%. The percentage of this “massive urine excretion” –- in the words of the authors –- may have been even greater since this study only used a two-week “washout” period which may not have been enough time to normalize the baseline readings for the placebo condition. There is concern that the increased urinary excretion rate of creatine places excessive strain on the kidneys.

    A study by Kreider and others (1998) using 25 "healthy" football players found that 28 days of creatine supplementation (15.75 grams per day) produced changes in muscle and liver enzymes -– which are often used as indicators or “markers” of kidney (and liver) function. In this study, a group who took creatine experienced an average increase in their levels of creatine kinase by 155.8%, lactate dehydrogenase by 24.1%, aspartate aminotransferase by 16.5% and alanine aminotransferase by 16.6%. On average, those who received a placebo increased their levels of creatine kinase by 70.1% and lactate dehydrogenase by 11.4%; their levels of aspartate aminotransferase and alanine aminotransferase decreased by 2.4% and 7.4%, respectively. (Analysis of a fifth enzyme -- g-glutamyltransferase -- showed a very slight elevation in both groups.) Further, two reports of the same study by Almada, Mitchell and Earnest (1996) and Earnest, Almada and Mitchell (1996) showed that eight weeks of creatine supplementation (20 grams per day for five days and 10 grams per day for 51 days) produced significant elevations in muscle and liver enzymes. Although the elevated levels returned to normal following a four-week withdrawal of creatine, it still raises fears -– particularly for individuals with impaired kidney (or liver) function.

    Case in point: Pritchard and Kalra (1998) reported that a 25-year-old soccer player with a history of kidney disease experienced a sudden and substantial deterioration of his condition while taking creatine. After being advised to stop taking creatine, his kidney function returned to normal. Incidentally, his intake of creatine did not exceed the “recommended dosage.” Kuehl, Goldberg and Elliot (1998) reported “renal insufficiency” –- a functional disorder of the kidneys -- in a 19-year-old football player that was induced by regular creatine supplementation. Although his intake of creatine exceeded the “recommended dosage,” the grim reality is that many athletes routinely do the same. The physicians who authored this report recommended that athletes who use creatine should have their kidney function assessed.

    The sole end product of the breakdown of creatine is creatinine. Serum creatinine is used indirectly as an indicator of kidney stress. The aforementioned study by Kreider and colleagues (1998) involving 25 "healthy" football players found that creatine supplementation significantly increased serum creatinine levels. Specifically, the group who took a placebo experienced a 4.8% increase in their serum creatinine levels while the group who took creatine (15.75 grams per day for 28 days) had a 22.55% increase. The authors noted that despite the increase, the levels “remained within normal limits for individuals engaged in intense training.” The fact is that those who took creatine had serum creatinine levels that were –- on average -– 8.7% higher than the upper limit of “normal.” And if the standard deviation of the average value is considered, 16% of those who took creatine had serum creatinine levels that exceeded the upper limit of “normal” by 20%. Regardless of whether or not the increases "remained within normal limits for individuals engaged in intense training," it is clear that creatine supplementation produced a markedly greater elevation of serum creatinine levels. Along these lines, some have argued that the serum creatinine levels are elevated because creatine supposedly gives athletes the ability to train more intensely or to maintain greater training volume. This appears to be flawed thinking since the subjects in this study (who underwent the same training) did not know whether they were receiving creatine or a placebo and, therefore, would not train any differently.

    Plisk (2000) stated that “short-term creatine supplementation seems to have no detrimental effect on hepatic or renal function in healthy subjects.” Two points: First, any comment concerning the effects of “short-term creatine supplementation” on liver or kidney function (or anything else) is irrelevant –- and not very comforting -- due to the fact that the majority of individuals probably do not use creatine on a “short-term” basis. Second, his statement isn’t exactly true. Koshy, Griswold and Schneeberger (1999) reported that a previously “healthy” 20-year-old man who consumed creatine (20 grams per day for four weeks) developed nausea, vomiting and bilateral flank pain. A physical examination revealed dehydration and diffuse abdominal tenderness. The man was hospitalized and a renal biopsy found a kidney disorder known as “acute focal interstitial nephritis.” This rare disorder –- which occurs in roughly 1 out of 25,000 people –- causes a reduction of kidney function ranging from mild dysfunction to acute kidney failure. His condition improved after he stopped taking creatine. The physicians who authored this report warned that the use of creatine may be associated with injury to the kidneys.

    CAUTIONARY POSITIONS

    In May 1998, the Association of Professional Team Physicians reported that 85% of its members did not recommend creatine. In June 1998, a survey published in USA Today revealed that only five teams in the National Football League approved the use of creatine by their players. A number of teams have written stances on creatine supplementation. For instance, the Tampa Bay Buccaneers distribute a position paper to all of their athletes that details the many potential side effects from creatine supplementation. Their position paper concludes that their organization “does not endorse creatine supplementation as a training adjunct to [their] players” (Asanovich 1998). It’s safe to say that the reason for such cautionary positions by those entrusted with overseeing the health and safety of professional athletes is because of the potential for side effects from creatine supplementation.

    But cautionary positions aren’t only recommended for professional athletes. In April 1999, the American College of Sports Medicine conducted an official roundtable on creatine supplementation. The roundtable -– which included 12 individuals with either a doctoral or medical degree -- concluded that the data on the side effects of creatine supplementation in those less than 18 years of age are “grossly inadequate” and, therefore, that it is not advised for individuals in that age group (Terjung et al. 2000). Finally, a large number of authorities –- including the Food and Drug Administration -- have advised consumers not to use creatine without the approval of a physician (Williams and Branch 1998).

    THE BOTTOM LINE

    Contrary to the claims of some individuals, the “solid research” concerning the effectiveness of creatine supplementation on strength, endurance and lean-body mass in a laboratory setting is inconclusive. And any research that has shown an increase in strength or other performance measures cannot be generalized or applied to athletic situations that are done outside a laboratory. Indeed, the “solid research” concerning the effectiveness of creatine supplementation outside a laboratory has found that it rarely improved the performance of highly trained subjects in actual sports, realistic events or competitive situations. It is also important to note that those who would benefit the most from creatine supplementation include vegetarians and individuals with unusually low levels of creatine in their bodies.

    Keep in mind, too, that studies investigating creatine are often funded by grants from supplement companies or have one or more authors who serve as “consultants” for such companies (Juhn 1999). Needless to say, it’s difficult to have faith in the results of studies that have the monetary backing of companies that have a direct financial interest in the outcome of the research.

    At this point in time, literally no one knows the long-term effects of creatine supplementation. Promoters of creatine supplementation insist that there are no negative side effects when it is consumed in the “recommended dosage” -- typically 20 - 25 grams per day for 4 – 7 days of “loading” and then 2 grams per day for “maintenance.” The unmistakable reality, however, is that the majority of individuals –- thinking that “more is better” -– undoubtedly exceed the “recommended dosage” of creatine on a regular basis. While on the subject, the “recommended dosage” should be relative to body weight. For example, a 140-pound individual should have a lower “recommended dosage” than a 240-pound individual. Finally, the potential side effects from combining creatine with one or more of the countless nutritional supplements on the market are unknown.

    Plisk (2000) stated that “it may be more appropriate to compare creatine supplementation with the practice of carbohydrate loading.” Perhaps in the sense that in both types of “loading,” there is an attempt to “load” the stockpiles of an energy substrate. But that’s where the similarities between creatine loading and carbohydrate loading end. There is really no concern with incurring any adverse side effects from consuming too many carbohydrates as there is with creatine –- unless, of course, the carbohydrate loading is based upon the classical glycogen supercompensation model as proposed by Ahlborg and colleagues (1967) which was found to be physiologically distressful.

    When it comes to creatine supplementation, the bottom line is to be cautious, not careless.



    REFERENCES:

    Ahlborg, B., J. Bergstrom, J. Brohult, L.-G. Ekelund, E. Hultman and G. Maschio. 1967. Human muscle glycogen content and capacity for prolonged exercise after different diets. Foersvarsmedicin 3: 85-99.

    Almada, A. L., T. L. Mitchell and C. P. Earnest. 1996. Impact of chronic creatine supplementation on serum enzyme concentration. Federation of American Societies of Experimental Biology Journal 10: A791.

    Asanovich, M. 1998. Tampa Bay Buccaneers position paper: creatine supplementation. Tampa Bay Buccaneers: Tampa, FL.

    Balsom, P. D., S. D. R. Harridge, K. Soderlund, B. Sjodin and B. Ekblom. 1993. Creatine supplementation per se does not enhance endurance exercise performance. Acta Physiologica Scandinavica 149: 521-523.

    Burke, L. M., D. B. Pyne and R. D. Telford. 1996. Effect of oral creatine supplementation on single-effort sprint performance in elite swimmers. International Journal of Sports Nutrition 6: 222-233.

    Centers for Disease Control and Prevention. 1998. Hyperthermia plus dehydration-related deaths associated with intentional rapid weight loss in three collegiate wrestlers – North Carolina, Wisconsin, and Michigan. Morbidity and Mortality Weekly Report 47: 105-108.

    Clarkson, P. M., and E. S. Rawson. 1999. Nutritional supplements to increase muscle mass. Critical Reviews in Food Science and Nutrition 39: 317-328.

    Earnest, C. P., A. L. Almada and T. L. Mitchell. 1996. Influence of chronic creatine supplementation on hepatorenal function. Federation of American Societies of Experimental Biology Journal 10: A790.

    Ensign, W. Y., I. Jacobs, W. K. Prusaczyk, H. W. Goforth, P. B. Law and K. E. Schneider. 1998. Effects of creatine supplementation on short-term anaerobic exercise performance of U. S. Navy SEALs. Medicine and Science in Sports and Exercise 30: S265.

    Gilliam, J. D., C. Hohzorn, D. Martin and M. H. Trimble. 2000. Effect of oral creatine supplementation on isokinetic torque production. Medicine and Science in Sports and Exercise 32: 993-996.

    Godly, A., and J. W. Yates. 1997. Effects of creatine supplementation on endurance cycling combined with short, high-intensity bouts. Medicine and Science in Sports and Exercise 29: S251.

    Goldberg, P. G., and P. J. Bechtel. 1997. Effects of low dose creatine supplementation on strength, speed and power events by male athletes. Medicine and Science in Sports and Exercise 29: S251.

    Hamilton-Ward, K., M. Meyers, W. A. Skelly, R. J. Marley and J. Saunders. 1997. Effect of creatine supplementation on upper body extremity anaerobic response in females. Medicine and Science in Sports and Exercise 29: S146.

    Hultman, E., K. Soderland, J. A. Timmons, G. Cederblad, P. L. Greenhaff. 1996. Muscle creatine loading in man. Journal of Applied Physiology 81: 232-237.

    Juhn, M. S. 1999. Oral creatine supplementation. The Physician and Sports Medicine 27: 47-50, 53-54, 56, 61, 89.

    Juhn, M. S., J. W. O’Kane and D. M. Vinci. 1999. Oral creatine supplementation in male collegiate athletes: a survey of dosing habits and side effects. Journal of the American Dietetic Association 99: 593-595.

    Juhn, M. S., and M. Tarnopolsky. 1998. Potential side effects of oral creatine supplementation: a critical review. Clinical Journal of Sports Medicine 8: 298-304.

    Kirksey, K., B. J. Warren, M. H. Stone, M. R. Stone and R. L. Johnson. 1997. The effects of six weeks of creatine monohydrate supplementation in male and female track athletes. Medicine and Science in Sports and Exercise 29: S145.

    Koshy, K. M., E. Griswold and E. E. Schneeberger. 1999. Interstitial nephritis in patient taking creatine. New England Journal of Medicine 340: 814-815.

    Kreider, R. B., M. Ferreira, M. Wilson, P. Grindstaff, S. Plisk, J. Reinardy, E. Cantler and A. L. Almada. 1998. Effects of creatine supplementation on body composition, strength, and sprint performance. Medicine and Science in Sports and Exercise 30: 73-82.

    Kuehl, K., L. Goldberg and D. Elliot. 1998. Renal insufficiency after creatine supplementation in a college football athlete. Medicine and Science in Sports and Exercise 30: S235.

    Mihic, S., J. R. MacDonald, S. McKenzie and M. A. Tarnopolsky. 2000. Acute creatine loading increases fat-free mass, but does not affect blood pressure, plasma creatinine, or CK activity in men and women. Medicine and Science in Sports and Exercise 32: 291-296.

    Miszko, T. A., J. T. Baer and P. M. Vanderburgh. 1998. The effects of creatine loading on body mass and vertical jump in female athletes. Medicine and Science in Sports and Exercise 30: S141.

    Mujika, I., J. C. Chatard, L. Lacoste, F. Barale and A. Geyssant. 1996. Creatine supplementation does not improve sprint performance in competitive swimmers. Medicine and Science in Sports and Exercise 28: 1435-1441.

    Mujika, I., and S. Padilla. 1997. Creatine supplementation as an ergogenic aid for sports performance in highly trained athletes: a critical review. International Journal of Sports Medicine 18: 491-496.

    Myburgh, K. H., A. Bold, B. Bellinger, G. Wilson and T. D. Noakes. 1996. Creatine supplementation and sprint training in cyclists: metabolic and performance effects. Medicine and Science in Sports and Exercise 28: S81.

    Plisk, S. S. 2000. The creatine myth. Wrestling USA 35 (April 15): 54-55.

    Poortmans, J. R., H. Auquier, V. Renaut, A. Durussel, M. Saugy and G. R. Brisson. 1997. Effect of short-term creatine supplementation on renal responses in men. European Journal of Applied Physiology 76: 566-567.

    Pritchard, N. R., and P. A. Kalra. 1998. Renal dysfunction accompanying oral creatine supplements. Lancet 351: 1252-1253.

    Quackenbush, A., F. Locascio, M. Gorman, J. Wygand and R. M. Otto. 1999. The effects of creatine supplementation on muscular strength and body composition of high school athletes. Medicine and Science in Sports and Exercise 31: S102.

    Redondo, D.R., E.A. Dowling, B.L. Graham, A.L. Almada and M.H. Williams. 1996. The effect of oral creatine monohydrate supplementation on running velocity. International Journal of Sports Nutrition 6: 213-221.

    Stout, J. R., J. Echerson, D. Noonan, G. Moore and D. Cullen. The effects of a supplement designed to augment creatine uptake on exercise performance and fat free mass in football players. Medicine and Science in Sports and Exercise 29: S251.

    Terjung, R. L., P. Clarkson, E. R. Eichner, P. L. Greenhaff, P. J. Hespel, R. G. Israel, W. J. Kraemer, R. A. Meyer, L. L. Spriet, M. A. Tarnopolsky, A. J. M. Wagenmakers and M. H. Williams. 2000. The American College of Sports Medicine Roundtable on the physiological and health effects of oral creatine supplementation. Medicine and Science in Sports and Exercise 32: 706-717.

    Terrillion, K. A., F. W. Kolkhorst, F. A. Dolgener and S. J. Joslyn. 1997. The effect of creatine supplementation on two 700-m running bouts. International Journal of Sports Nutrition 7: 138-143.

    Vandenberghe, K., N. Gillis, M. Van Leemputte, P. Van Hecke, F. Vanstapel and P. Hespel. 1996. Caffeine counteracts the ergogenic action of muscle creatine loading. Journal of Applied Physiology 80: 452-457.

    Van Leemputte, M., K. Vandenberghe and P. Hespel. 1999. Shortening of muscle relaxation time after creatine loading. Journal of Applied Physiology 86: 840-844.

    Williams, M. H., and J. D. Branch. 1998. Creatine supplementation and exercise performance: an update. Journal of the American College of Nutrition 17 (3): 216-234.

    Wood, K. K., R. M. Zabik, M. L. Dawson and P. A. Frye. 1998. The effects of creatine monohydrate supplementation on strength, lean body mass, and circumferences in male weightlifters. Medicine and Science in Sports and Exercise 30.

    --------
    El Guapo says, ""You can buy muscles, but you can't buy COJONES!"
    --------
    The Wastrel - So attractive he HAS to be a woman.
    - Pizdoff
  9. OMG is offline

    Registered Member

    Join Date
    Apr 2003
    Posts
    50

    Posted On:
    6/09/2003 9:23pm


     

    --
    Hell yeah! Hell no!
    Hahaha, when i met these pothead kids at my school, they were getting 45$ O's.... ULTIMATE SHWAG.. Anyway, i have connex strait to the growers in SD, so its all dank

    and cheep.
  10. Stold3 is offline

    Senior Member

    Join Date
    Apr 2003
    Location
    Est
    Posts
    1,571

    Posted On:
    6/10/2003 4:59pm


     

    --
    Hell yeah! Hell no!
    I refuse to smoke anything that is even remotely brown.
Page 3 of 4 FirstFirst 123 4 LastLast

Bookmarks

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •  

Powered by vBulletin™© contact@vbulletin.com vBulletin Solutions, Inc. 2011 All rights reserved.